

Adapting a General Purpose Social Robot for Paediatric Rehabilitation through In-situ Design

Felip Martí^{1,2}, Jo Butchart^{3,4}, Sarah Knight^{4,3}, Adam Scheinberg^{3,4}, Lisa Wise¹, Leon Sterling¹, Chris McCarthy¹

fmarti@swin.edu.au

¹Swinburne University of Technology, Australia
²Data61 – CSIRO, Australia
³Royal Children's Hospital, Australia
⁴Murdoch Children's Research Institute, Australia

International Conference on Human-Robot Interaction 5th-8th March 2018 Chicago, IL

Introduction - The Project

In-situ design study:

- Exploratory
- Iterative development and evaluation

Introduction - Outcomes

Outcomes In-Situ Design

- Over 40 unique patients across both phases of development
- From exploration activities to stand-alone clinical deployment in 23 months
- Frequent in-situ engagement with clinical stakeholders established trust and rapport
- Therapist, and psychology expertise incorporated in the team
- Stakeholder engagement promotes a sense of ownership
- Patient population identified in Phase 1, extended in Phase 2

Project Phases

Project Phases - Phase 1 - First half

Goals

- Stakeholder engagement
- Rapid prototyping (WoZ and Visual IDE)

Outcomes

- Basic roles for the SAR
- Patient Population

Project Phases - Phase 1 - Second half

Outcomes

- Core exercises and demonstrations
- Delivering full rehab sessions with limited autonomy
- Requirements for base level prototype

Project Phases - Phase 2 - Prototype

SAR rehabilitation exercises

Prototype implementation

- Following the Roles and Requirements (Phase 1)
- No Wizard-of-Oz
- Robot Operating System
- SAR leading Sessions
- Existing rehab exercises

Project Phases - Phase 2 - Testing

http://felipmarti.github.io HRI 2018 - Chicago Adapting a General Purpose Social Robot for Paediatric Rehab 5/13

Roles and Requirements

Roles

- Demonstrator
- Companion
- Motivator
- Coach

Roles and Requirements

Roles

- Demonstrator
- Companion
- Motivator
- Coach

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

Mock-up code in Phase 1

III ROS

Parameters

- Participants' name
- Exercises (Activities)
- Sets, Repetitions, Speed

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

Sit-to-Stands using a seat

Sit-to-Stands crouching

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

Tactile Interface

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Design Decisions

Positioning the robot

Placing auxiliary aids

Posture

Helping to keep pace

- Configurability
- Stability
- Adaptability
- Interaction
- Integration
- Responsiveness
- Stand-alone
- Robustness and Endurance

Preliminary Session Results - Physios' Feedback

Table:Perceive easy-of-use and usefulnessquestions for physiotherapists

Physios' Feedback (N=4)

- Physios without training exhibited competence
- Most useful feature: Demonstrate exercises

Question	PT-1	PT-2	PT-3	PT-4
I think I will know quickly	5	4	3	5
how to use the robot				
I find the robot easy to use	5	4	3	4
I think the robot is useful to	5	4	4	4
help in paediatric therapy				
It would be convenient to	5	4	4	4
have the robot for therapy				
sessions with children				

Likert scale 1 = Strongly Disagree 2 = Disagree 3 = Neutral 4 = Agree 5 = Strongly Agree

Preliminary Session Results - Parents' Feedback

Parents' Feedback (N=4)

- The robot helped to keep child's focused
- Two parents preferred a neutral gender colour

Table: Perceive easy-of-use andusefulness questions for parents

Question	G-1	G-2	G-3	G-4
I think I will know quickly	5	5	5	3
how to use the robot				
I find the robot easy to use	5	5	5	3
I think the robot is useful for	5	5	5	5
paediatric rehabilitation				
It would be convenient to	3	5	5	4
use the robot in sessions to-				
gether with the physio				
It would be convenient to	4	5	5	3
use the robot when the				
physio is not in the session				

Likert scale

1 = Strongly Disagree 2 = Disagree 3 = Neutral 4 = Agree 5 = Strongly Agree

Design Process Evaluation

Outcomes In-Situ Design

- Over 40 unique patients across both phases of development
- From exploration activities to stand-alone system in 23 months
- Frequent in-situ engagement with clinical stakeholders established trust and rapport
- Therapist, and psychology expertise incorporated in the team
- Stakeholder engagement promotes a sense of ownership
- Patient population identified in Phase 1, extended in Phase 2

Design Process Evaluation

Outcomes In-Situ Design

- Over 40 unique patients across both phases of development
- From exploration activities to stand-alone system in 23 months
- Frequent in-situ engagement with clinical stakeholders established trust and rapport
- Therapist, and psychology expertise incorporated in the team
- Stakeholder engagement promotes a sense of ownership
- Patient population identified in Phase 1, extended in Phase 2

Limitations

- Time investment
- Managing stakeholders' expectations
- Developers have to concede to the needs of the stakeholders

Future Work

• Phase 2 analysis

Future Work

- Phase 2 analysis
- Tablet interface to configure the robot

Future Work

- Phase 2 analysis
- Tablet interface to configure the robot
- Phase 3 case studies aiming for clinical trials

Future Work

- Phase 2 analysis
- Tablet interface to configure the robot
- Phase 3 case studies aiming for clinical trials
- System Improvements

Acknowledgements

Participants

Tablet Interface developed by:

Adapting a General Purpose Social Robot for Paediatric Rehabilitation through In-situ Design

Felip Martí^{1,2}, Jo Butchart^{3,4}, Sarah Knight^{4,3}, Adam Scheinberg^{3,4}, Lisa Wise¹, Leon Sterling¹, Chris McCarthy¹

fmarti@swin.edu.au

¹Swinburne University of Technology, Australia
²Data61 – CSIRO, Australia
³Royal Children's Hospital, Australia
⁴Murdoch Children's Research Institute, Australia

International Conference on Human-Robot Interaction 5th-8th March 2018 Chicago, IL